
Climate Change - Temperature

The **EU Copernicus Project** collects measurements of scientific institutions and provides meta-analysis. Their **short prognosis** for the temperature increase above pre-industrial time (1850-1900) until now:

Global: +1,3°C Europe: +2,3°C Arctis: +3,3°C

(Averages of the past 5 years to decrease the influence of annual variation)

This is more comprehensible if we consider the annual atmospheric CO_2 concentration^{1,2} and annual temperature.³

For the interpretation the following scientific explanations are useful:

- 1) An increase of atmospheric CO_2 increases the temperature on earth.
- 2) Human-caused CO₂ emissionen are responsible for these increases.
- 3) Our emissions are still increasing (36,8 Giga tons, 2024).⁴
- 4) EU has historically the second highest CO₂ emissions.^{5,6}
- 5) **350ppm** atmospheric CO₂ is considered a safe value for human civilisation.⁷
- 6) In 2024 the atmospheric CO₂ is at 420ppm.
- 7) Annually the atmospheric CO_2 increases by 2-2.5ppm.⁸ (tendency increasing)
- 8) A stable temperature increase of max. 1.5°C, requires less than 430ppm atmospheric CO₂.⁹ (reached around 2029)
- 9) A value of 450ppm means the global temperature increase is about 2.0°C. (reached around 2039)

6 <u>https://ourworldindata.org/contributed-most-global-co2</u>

^{1 &}lt;u>https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121</u>

² https://climate.copernicus.eu/climate-indicators/greenhouse-gas-concentrations

^{3 &}lt;u>https://climate.copernicus.eu/climate-indicators/temperature</u>

⁴ https://www.pik-potsdam.de/en/news/latest-news/co2-emissions-at-record-high-in-2023

⁵ Jones, Matthew W., et al. "National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850." *Scientific Data* 10.1 (2023): 155.

^{7 &}lt;u>https://www.pik-potsdam.de/en/output/infodesk/planetary-boundaries/planetary-boundaries</u>

^{8 &}lt;u>https://gml.noaa.gov/ccgg/trends/gl_gr.html</u>

⁹ IPCC Fourth Assessment Report, WG I, Chapter 10, Table 10.8, 1.5°C is interpolated as the dependence is linear.

A few consequences of the global temperature increase

- Increased risk of **forest fires** (e.g., <u>Griechenland 2023</u>, <u>Kanada</u> 2023), **drying up** of rivers and lakes.¹⁰ (e.g. <u>Po, Italy, 2022</u>)
- Extreme Weather events are much more likely (heat waves, droughts, heavy rainfall, hail, etc.)
- **Crop failure** not only caused by droughts and hail; yet also by earlier blooming time of plants like apples as late frosts cause flowers to die and insects do not polinate.¹¹
- Freshwater shortness^{12,13}
- Spread of tropical diseases, deaths and sickness due to heat
- Flight and Migration because of food shortage and ressource wars
- Pariser Agreement of 1.5° C until 2100 NOT achievable WITHOUT atmospheric CO₂ removal and quick reduction of emissions. (48% CO₂ emissions reduction until 2030 compared to 2019)¹⁴
- Loss of ice sheets (Glacier, sea ice) and the cooling Albedo effect.¹⁵
- Sea level rise: approx. 0.4-2m until 2100 (up to 15m 2300)¹⁶
- **Tipping point** with irreversible damage and additional temperature increases:¹⁷
 - melting of Greenland ice sheet, western antarktic ice sheet and Barents Sea ice sheet (between 1.5°C-2°C)
 - collaps of oceanic circulation in the Labrador and Irminger sea (between 1.5°C-2°C)
 - dying of coral reefs (between 1,5°C-2°C)
 - dying of the Amazonas rainforest (between 2°C-3,7°C)
 - **thawing** of boreal permafrost (between 3,7°C-6°C)
 - collaps of the atlantic oceanic circulation (between 3,7°C-6°C)
 ...

The effects of these tipping points on the global climate are hard to predict as they play a complex role in the climate system.

¹⁰ Yao, Fangfang, et al. "Satellites reveal widespread decline in global lake water storage." *Science* 380.6646 (2023): 743-749. pdf

¹¹ Wyver, Chris, et al. "Climate driven shifts in the synchrony of apple (Malus x domestica Borkh.) flowering and pollinating bee flight phenology." *Agricultural and Forest Meteorology* 329 (2023): 109281. <u>doi</u>

^{12 &}lt;u>https://www.eea.europa.eu/en/analysis/indicators/use-of-freshwater-resources-in-europe-1</u>

^{13 &}lt;u>https://www.un.org/en/climatechange/science/climate-issues/water</u>

¹⁴ IPCC th Assessment Report, Table SPM.1, https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf

^{15 &}lt;u>https://climate.copernicus.eu/climate-indicators/glaciers, https://climate.copernicus.eu/climate-indicators/ice-sheets, https://climate.copernicus.eu/climate-indicators/sea-ice</u>

^{16 &}lt;u>https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level</u>

¹⁷ https://www.pik-potsdam.de/en/output/infodesk/tipping-elements